

Figura 1.9 Calor específico molal como función de la temperatura para el hidrógeno.

Solamente debe indicarse que, para remover estas discrepancias es necesario recurrir a la mecánica estadística cuántica.

Calor especifico de un sólido

De acuerdo con Einstein, un sólido está formado por un arreglo periódico tridimensional de átomos, que pueden oscilar con la misma frecuencia v con respecto a sus posiciones de equilibrio, como osciladores armónicos. Cada átomo del sólido tiene entonces 6 grados de libertad $\left(\frac{1}{2}kx^2\right)$ y por lo tanto, la energía interna del sólido esta dada por:

$$U = 3NkT = 3v_0RT$$

$$C_v^* = \left(\frac{\partial u^*}{\partial T}\right) = 3R = 24.9 \times 10^3 \frac{joules}{mol^\circ K}$$

que es la bien conocida fórmula de Dulong y Petit. Sin embargo la teoría clásica vuelve a fallar a bajas temperaturas, donde sabemos que dicha ecuación ya no es válida.

FENÓMENOS DE TRANSPORTE

Los fenómenos de transporte constituyen la base de todo proceso físico donde se presentan el flujo de masa, de ímpetu y de energía. Las ecuaciones que gobiernan estos flujos contienen

cantidades, coeficientes indeterminados como los de difusión, conductividad térmica y viscosidad, cuyo conocimiento es imprescindible para poder integrar dichas ecuaciones para condiciones a la frontera especificas. Una idea aunque cualitativa, pero muy clara de lo que significan estos coeficientes, se puede obtener de la teoría cinética de los gases. A esto nos dedicaremos en lo que sigue. Empecemos por definir ciertos conceptos fundamentales:

Trayectoria Libre Media

Vamos a considerar un número de propiedades de un gas que dependen del hecho que las moléculas tienen un tamaño finito y efectúan colisiones unas con otras.

La trayectoria libre media en una gas, es la distancia media que recorre una molécula entre dos colisiones sucesivas. La designaremos por λ .

Para un cálculo inicial de λ , supongamos que en un instante dado las moléculas, consideradas como *esferas elásticas* de radio ρ , se congelan, menos una que consideramos como no puntual. El resto serán puntuales. La molécula en movimiento tendrá una velocidad \overline{v} y un radio efectivo 2ρ .

La sección transversal efectiva de la molécula en movimiento es de

$$\sigma = \pi d^2 = \pi (2\rho)^2 = 4\pi \rho^2$$

que es la sección transversal de la colisión.

En un tiempo t la molécula recorre un distancia \overline{v} t y subtiende un volumen cilíndrico $\sigma \overline{v}t$, por lo cual el número de colisiones en el tiempo t será $\sigma n\overline{v}t$, donde n es el número de moléculas por unidad de volumen.

La frecuencia de colisiones

$$z = \frac{on\overline{\upsilon}t}{t} = on\overline{\upsilon}$$

Se define λ como:

$$\lambda = \frac{dis \tan cia \quad recorrida \quad en \quad t}{numero \quad de \quad colisiones \quad en \quad t} = \frac{\overline{\upsilon}t}{zt}$$

$$\lambda = \frac{\overline{\upsilon}t}{zt}$$

$$\lambda = \frac{1}{cr}$$
(1)